

IEC TS 62600-201

Edition 2.0 2025-11

TECHNICAL SPECIFICATION

Marine energy - Wave, tidal and other water current converters - Part 201: Tidal energy resource assessment and characterization

ICS 27.140 ISBN 978-2-8327-0881-1

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublishedStay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@jec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

CONTENTS

F	DREWORE)	6
In	troduction		8
1	Scope		9
2	Normati	ve references	9
3	Terms a	and definitions	9
4		s and abbreviated terms	
	•	/mbols and units	
	•	obreviations	
5		ology overview	
		oject definition	
	5.1.1	General	
	5.1.2	Stage 1: Feasibility study	
	5.1.3	Stage 2: Layout design study	
	5.2 M	ethodology	12
6	Data co	llection	15
	6.1 G	eneral	15
	6.2 Ba	athymetry	15
	6.2.1	General	15
	6.2.2	Results presentation	16
	6.3 Ti	dal heightd	16
	6.3.1	General	16
	6.3.2	Results presentation	16
	6.4 Ti	dal currents	17
	6.4.1	General	17
	6.4.2	Tidal current mobile survey	
	6.4.3	Tidal current stationary survey	
	6.4.4	Measurement uncertainty	
		eteorological data	
	6.5.1	General	
	6.5.2	Wind data	
	6.5.3	Atmospheric pressure	
	6.5.4	Results presentation	
		ave climate	
	6.6.1	General	
	6.6.2 6.7 Ri	Results presentation	
	6.7.1	ver discharge	
	6.7.1	Results presentation	
	****	rbulence	
	6.8.1	General	
	6.8.2	Results presentation	
		rge scale flow structure	
		ratification, seawater density and sediment measurement	
	6.10.1	General	
	6.10.2	Results presentation	
		eneration of annual velocity time series (harmonic analysis)	
		• /	

	6.11.	1 General	30
	6.11.	2 Velocity prediction	31
	6.11.	Results presentation	32
7	Mode	el development and outputs	32
	7.1	General	32
	7.2	Choice of model	33
	7.2.1	General considerations	
	7.2.2		
	7.3	Model characteristics	
	7.3.1	Model coverage and boundary conditions	
	7.3.2		
	7.3.3		
	7.4	Analysing data to provide model inputs, calibration and validation	
	7.4.1	General	
	7.4.2		
	7.4.3	Currents	
	7.4.4	Meteorological analysis	
	7.4.5	Waves	
	7.4.6	Turbulence	
	7.4.7		
	7.4.8	Sediment	
	7.4.9		
	7.5	Model calibration or validation	
	7.5.1	General	
	7.5.2		
	7.5.2		
	7.6	Incorporating energy extraction	
	7.6.1	General	
	7.6.2		
		General model uncertainty	
	7.7.1	General	
	7.7.1		
	7.8	Generation of annual velocity time series	
	7.8.1	General	
	7.8.2	Long-term model current predictions (harmonic analysis)	
	7.8.3	Temporal modelling uncertainty	
	7.8.4	Results presentation	
	7.9	General model result presentation	
8		analysis	
		Velocity distribution curves – joint probability distribution	
	8.1 8.2	Power-weighted velocity calculation	
		•	
	8.3	Uncertainty in transferring from time to frequency domain	
<u> </u>	8.4 Bono	•	
9	-	rting of results	
	9.1	Purpose of reporting	
^	9.2	Contents of the report	
٩r	,	informative) Calculation of TEC annual energy production	
	A.1	General	52

A.2	Individual TEC annual energy production (AEP)	52
A.3	Array AEP	53
A.4	Loss categories	53
A.4.1	General	53
A.4.2	Plant performance and losses uncertainty	53
A.5	AEP uncertainty	54
A.6	Results presentation	
Annex B	(informative) Uncertainty	
B.1	Uncertainty categories	
B.2	Combining uncertainties	
	(informative) Guidelines for current profiler measurements	
	· · · · · · · · · · · · · · · · · · ·	
C.1	General	
C.2	Instrument configuration	
C.3	Instrument calibration	
C.4	Correcting for clock drift	57
C.5	Depth quality control	57
C.6	Velocity quality control	58
C.7	Estimating turbulence quantities	58
C.8	Mobile and hybrid mobile-stationary survey	59
C.8.1	1 General	59
C.8.2	Navigation and vessel-handling	59
Annex D	(informative) Case Studies	61
D.1	General	61
D.2	Site evaluation	
D.2.1		
D.2.2		
D.2.3	• • •	
D.2.4		
D.2.5 D.2.5		
	371	
D.3	Model case study	
	1 General	
D.3.2		
D.3.3	•	
D.3.4		
D.3.5		
D.3.6	General model output	84
D.3.7	3 7	
Annex E ((informative) Tidal resource classification system	92
E.1	Introduction	92
E.2	Classification parameters	92
E.3	Classification example	93
Bibliograp	bhy	
	,	
-:		
	- The vertical variation of tidal current across an example projected capture horizontal-axis TEC	<i>1</i> Ω
	- Joint velocity and direction probability density distribution, a location in t, Alaska	50
	- Example velocity magnitude probability histogram	
. iuuid 3 -	- LABINDIE VEIDURV INBUNITUUE DIODADINKV INSLUURAII	ວບ

Figure 4 – Example exceedance curve for velocity magnitude	51
Figure C.1 – Hybrid mobile-stationary vessel waypoints and tolerance range rings	60
Figure D.1 – Site selection - the Strangford Narrows	61
Figure D.2 – Strangford Lough bathymetry	62
Figure D.3 – ADP seabed frame prior to deployment	63
Figure D.4 – Raw data time-series of heading, pitch, and roll	64
Figure D.5 – Hovmöller diagram showing the current data over the water column over deployment time	65
Figure D.6 – Instantaneous height above mean sea level time series	66
Figure D.7 – Instantaneous current velocity	67
Figure D.8 – Instantaneous power-weighted speed and 10 min averaged power-weighted speed	67
Figure D.9 – Velocity-bin averaged current profiles through the water column	68
Figure D.10 – A 1-year forecast of height above mean sea level and current-speed	72
Figure D.11 – Schottel SIT deployment configuration at QML tidal test site, Strangford Lough, Northern Ireland	73
Figure D.12 – Theoretical, data derived and actual power output performance, cyan data points are taken from (Starzmann et al., 2015 [97])	74
Figure D.13 – Velocity probability distribution at TEC location	74
Figure D.14 – Velocity exceedance curve at TEC location	75
Figure D.15 – Forecast tidal flow magnitude and electrical power output for location 1	75
Figure D.16 – The study area in Tacoma Narrows, WA	77
Figure D.17 – Distribution of tide gauges in the Salish Sea	79
Figure D.18 – Six NOAA - C.MIST CP locations in Tacoma Narrows area used for FVCOM model validation	81
Figure D.19 – Hodographs from the model and field data at all six locations and a scatter comparison of the different matrices computed to quantify the model performance	92
Figure D.20 – Comparisons of modelled and observed vertical velocity profiles at	02
gauge PUG1528 during two spring and neap cycles in 2015	83
Figure D.21 – Velocity exceedance curves from the model and current profiler at gauge PUG1528	83
Figure D.22 – The variation of tidal current speed, V , and power density, $P_{\mathcal{W}}$, at different tide cycles in the Tacoma Narrows	84
Figure D.23 – Tidal ellipse map of the largest tidal current constituents, M_2 and K_1 , in	0-1
the Tacoma Narrows (represented by blue lines)	85
Figure D.24 – Joint velocity direction distribution at PUG1528	
Figure D.25 – Energy extraction at the project location	
Figure D.26 – The effect of the proposed TEC array in Tacoma Narrows	
Figure D.27 – Representative TEC locations	
Figure D.28 – Velocity probability histograms for the three representative TEC locations	91
Figure E.1 – Scatter plot of maximum theoretical power available vs cross-sectional area for all the hotspot locations around the US coast (Kilcher et al. [33])	94
Figure E.2 – Primary parameter classification scheme based on mean velocity	

Figure E.3 – Scatter plot of mean velocity vs cross-section for all the hotspot locations around the US coast from national tidal resource assessment report (Haas et al., 2011[67])	95
Figure E.4 – Tidal stream mean currents across Cook Inlet (60.79 N, 151.26 W), colour-coded by their classes	95
Table 1 – Resource assessment stages	12
Table 2 – Model and field survey recommendations (overview)	14
Table 3 – Differences in measurement requirements at Stage 1 and Stage 2	23
Table A.1 – Recommended loss categories and definitions	53
Table B.1 – Recommended uncertainty categories and definitions	55
Table D.1 – ADP deployment location	62
Table D.2 – Sentinel V sampling configuration	64
Table D.3 – Sea-level at Location 1: Tidal constituents, amplitudes and phases	69
Table D.4 – Depth-averaged current velocity at Location 1 ellipse parameters (major axis, minor axis, inclination and phase)	70
Table D.5 – Year-to-year variability of AEP	76
Table D.6 – Comparison of modelled and observed tidal constituent amplitude (a) (in meters) and phase lag (Φ) (in degrees) at 10 tide gauge stations in the Salish Sea	79
Table D.7 – AEP estimated at gauge PUG1528 using principal component velocity (PCU, in m/s) and different channel vertical positions	83
Table D.8 – TEC array configuration used for energy extraction	89
Table D.9 – AEP for each representative TEC and total for the project	91
Table E.1 – Proposed tidal resource classification system	93

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Marine energy - Wave, tidal and other water current converters - Part 201: Tidal energy resource assessment and characterization

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC [had/had not] received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 62600-201 has been prepared by IEC technical committee 114: Marine energy – Wave, tidal and other water current converters. It is a Technical Specification.

This second edition cancels and replaces the first edition published in 2015. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) Includes clauses on assessing wave and current interaction;
- b) Expands turbulence data collection;
- c) Expands the measurement only method to include a combination of static and mobile surveys;
- d) Includes a method for combined tidal and river flow;
- e) Adds more description for treating uncertainty;
- f) Includes two case study examples.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
114/573/DTS	114/590/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 62600 series, published under the general title *Marine energy – Wave, tidal and other water current converters*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

Introduction

The development of the tidal power industry is at an early stage and the significance of particular tidal energy resource characteristics is not well understood. This document is intended to be updated as understanding of the resource and its response to power extraction becomes better understood. It is noted that it is presently particularly difficult to derive the uncertainty (within specified confidence limits) of the resource, given lack of field and model data for a statistically significant number of sites. However, within this document, guidance regarding the assessment of uncertainty within tidal resource assessment is given. Additionally, Annex C provides an overview of proposed loss and uncertainty categories, to help users better understand the key areas to be included in an energy yield assessment.

The purpose of this document is to provide a uniform methodology that will ensure consistency and accuracy in the estimation, measurement, characterization and analysis of the theoretical tidal current resource at sites that could be suitable for the installation of individual or arrays of Tidal Energy Converters (TECs), together with defining a standardised methodology with which this resource can be described and reported. Application of the estimation, measurement and analysis techniques recommended in this document will ensure that resource assessment is undertaken in a consistent and accurate manner. This document presents techniques that are expected to provide fair and suitably accurate results that can be replicated by others.

The overall goal of the methodology is to enable calculation of the Annual Energy Production (AEP) for the proposed array of TECs at each TEC location in conjunction with IEC TS 62600–200.

In this document, the theoretical tidal energy resource (undisturbed or disturbed by power extraction) is defined by the velocity probability distribution that is used to compute the AEP. For projects where the proposed AEP (converted to average power production) is less than 2 % of the theoretical undisturbed tidal energy resource (or in the case of headlands less than 10 MW installed capacity), AEP can be estimated from direct resource measurements, without requiring hydrodynamic modelling. In all other cases, the velocity probability distribution is assessed by hydrodynamic modelling that includes the effects of energy extraction, with appropriate verification of the baseline model by measurements. The methodology for measuring the required data is also defined. The direct resource measurement approach may use measured data at each TEC location, using either data from a stationary survey or hybrid mobile-stationary surveys, or both.

This document describes only the aspects of the resource required to calculate AEP and assess its uncertainty; e.g. it does not describe aspects of the resource required to evaluate design loads or to satisfy environmental regulations. Furthermore, this document is not intended to cover every eventuality that can be relevant for any particular project. Therefore, this document assumes that the user has access to, and reviews, other relevant IEC documentation before undertaking work (e.g. surveys and modelling) which could also satisfy other requirements.

Further background reading can be found here: IEC TS 62600-101:2015 [1], Coles and Blunden (2017) [2], Kreyszig (1983) [3], Batten et al., (2013) [4], Burton et al., (2011) [5], Roache (1994) [6].

1 Scope

This part of IEC 62600 establishes a system for analysing and reporting, through estimation or direct measurement, the theoretical tidal current energy resource in oceanic areas including estuaries (to the limit of tidal influence) that can be suitable for the installation of one or more TECs.

It is intended to be applied at various stages of project life cycle to provide suitably accurate estimates of the tidal resource to enable the arrays' projected annual energy production to be calculated at each TEC location in conjunction with IEC TS 62600–200.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-417, International Electrotechnical Vocabulary (IEV) - Part 417: Marine energy - Wave, tidal and other water current converters

IEC 61400–12–1, Wind turbines – Part 12-1: Power performance measurements of electricity producing wind turbines

IEC TS 62600–200, Marine energy – Wave, tidal and other water current converters – Part 200: Electricity producing tidal energy converters – Power performance assessment

IHO (International Hydrographic Organization), 2008, Standards for Hydrographic Surveys. Special Publication No. 44. 5th Edition